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Abstract The potential for the mean climate of the tro-
pical Pacific to shift to more El Niño-like conditions as a
result of human induced climate change is subject to a
considerable degree of uncertainty. The complexity of
the feedback processes, the wide range of responses of
different atmosphere–ocean global circulation models
(AOGCMs) and difficulties with model simulation of
present day El Niño southern oscillation (ENSO), all
complicate the picture. By examining the components of
the climate-change response that projects onto the
model pattern of ENSO variability in 20 AOGCMs
submitted to the coupled model inter-comparison pro-
ject (CMIP), it is shown that large-scale coupled atmo-
sphere–ocean feedbacks associated with the present day
ENSO also operate on longer climate-change time
scales. By linking the realism of the simulation of present
day ENSO variability in the models to their patterns of
future mean El Niño-like or La Niña-like climate
change, it is found that those models that have the lar-
gest ENSO-like climate change also have the poorest
simulation of ENSO variability. The most likely sce-
nario (p=0.59) in a model-skill-weighted histogram of
CMIP models is for no trend towards either mean
El Niño-like or La Niña-like conditions. However, there
remains a small probability (p=0.16) for a change to
El Niño-like conditions of the order of one standard
El Niño per century in the 1% per year CO2 increase
scenario.

1 Introduction

Like many aspects of anthropogenically forced climate
change, predictions of the future state of the climate of
the tropical Pacific (under a given scenario of enhanced
greenhouse gases and other radiatively active sub-
stances) are highly uncertain. Will sea surface tempera-
tures warm uniformly across the basin? Will there be
greater warming in the east in comparison to the west, or
greater warming in the west relative to the east? Will the
pattern of change be more complex than a simple zonal
dipole or uniform warming? What will be the atmo-
spheric response to patterns of SST change?

For the purpose of this study, we may define the terms
‘‘El Niño-like’’ and ‘‘La Niña-like’’ climate change to
denote patterns of mean change (or trend) in the equa-
torial tropical Pacific, which resemble at the ocean sur-
face and in the atmosphere, a present day El Niño or La
Niña event. Such trends in mean climate are of im-
portance because of the potential for quasi-permanent
changes in global climate, akin to those associated with
present day El Niño southern oscillation (ENSO) varia-
bility. Phenomena as diverse as the stabilization of the
thermohaline circulation (Latif et al. 2000), changes in
tropical cyclone tracks (McDonald et al. 2004) and the
possible death of the Amazon rainforest (Cox et al. 2000,
2004) have all been related to ENSO-like mean changes.
Changes in ENSO variability about a new mean state
(Timmermann et al. 1999; Collins 2000) further compli-
cate the picture but are not considered here.

Uncertainty arises partly because of the conflicting
theories about the mechanisms for mean climate change
in the region (Clement and Seager 1999; Knutson and
Manabe 1995; Cane et al. 1997; Pierrehumbert 1995)
that almost certainly involve complex cloud feedbacks
(Senior 1999; Meehl et al. 2000) and partly because
AOGCMs have produced a wide range of responses
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(Meehl and Washington 1996; Knutson and Manabe
1998; Noda et al. 1999). There have been some sugges-
tions of a real El Niño-like shift/trend in recent times,
evident in both physical and biological indicators
(Graham 1994; Trenberth and Hurrell 1994; Guilderson
and Schrag 1998; Ebbesmeyer et al. 1991), although it is
perhaps hard to separate the ‘‘signal’’ of any change
from the ‘‘noise’’ of ENSO variability. Nevertheless, the
IPCC third assessment report (Chap 9, Cubasch et al.
2001) did conclude that ‘‘Recent trends for surface
temperature to become more El Niño-like in the tropical
Pacific, ..., are projected to continue in many models’’.

Given a ‘‘perfect’’ model of the Earth system, and
assuming the response to be predictable in the sense that
for a relatively weak forcing (in comparison with e.g.
glacial-interglacial cycle) associated with commonly used
scenarios of future greenhouse gases there are no hys-
teresis effects or strong sensitive dependence on initial
conditions, then we might make reliable predictions of
tropical Pacific climate change under those given forcing
scenarios. However, models are not perfect. For example,
there are known systematic problems with cold biases in
mean SSTs in the equatorial regions in many models (e.g.
Meehl et al. 2000). Likewise, models exhibit varying de-
grees of success in simulating the main amplitude and
frequency characteristics of the ENSO cycle (AchutaRao
and Sperber 2002), the physics of which might be con-
sidered to be implicated in future climate change (as seen
in Jin et al. 2001). We can strive to improve models and
increase our understanding of the physical processes in-
volved in tropical climate change (e.g. Sun and Liu 1996),
yet there are considerable pressures from governments

and other bodies to provide quantitative predictions of
climate change to inform adaptation and mitigation po-
licies. Just as is the case with short-term weather fore-
casting, we are required to make projections using
imperfect models. How must we proceed?

Here, two steps are employed to quantify the un-
certainty in current projections of climate change:

1. An ensemble of model simulations is employed and
the prediction is quantitative in terms of the prob-
ability of a particular pattern of either El Niño or L
Niña-like climate change.

2. Not all models are considered equal i.e. the better
models are up-weighted and the poorer models are
down-weighted in the prediction distributions, re-
spectively.

The second step requires some quantitative measure
of ‘‘model skill’’, which can be related (as objectively as
possible) to the prediction variable in question. Together
with the first step, this will allow us to move forward
from statements such as ‘‘some models produce an El
Niño-like warming, some models do not’’ to ‘‘there is a
16% chance of a warming trend similar to an average El
Niño over the next 100 years’’. As pointed out by Allen
and Stainforth (2002), in the absence of a perfect model
this would seem the only sensible strategy for quantita-
tive prediction. In order to reduce the uncertainty in
climate prediction, we must first quantify it.

Ideally the ensemble of simulations should be large
enough to systematically span the range of uncertainties
associated with numerical climate prediction, e.g. re-
solution, poorly constrained parameters in para-
metrisation schemes, forcing scenarios, etc. Although
some efforts have been initiated (Allen and Stainforth
2002; Murphy et al. (2004)), we are still far from pos-
sessing such an ensemble. Hence we may use an ‘‘en-
semble of opportunity’’ provided by the coupled model
intercomparison project (CMIP)—a database of the
output of 20 different coupled atmosphere–ocean mod-
els. The different models are described in the CMIP web
site (http://www-pcmdi.llnl.gov/cmip) and in Covey
et al. (2003) and their ENSO variability is described in
AchutaRao and Sperber (2002). Two simulations are
provided from each model; (a) �80 year control simu-
lation with fixed levels of CO2 and (b) �80 year simu-
lation in which CO2 is increased from the control value
at a rate of 1% per year compounded. This ‘‘scenario’’ is
close enough to other established scenarios used by, e.g.
the Intergovernmental Panel on Climate Change to
provide a useful benchmark and to illustrate the method.

2 A method for producing probabilistic predictions
of El Niño-like change

The method employed here is to represent the pattern of
tropical Pacific climate change in each CMIP model in
terms of the pattern of natural ENSO variability in that

Table 1 Fraction of variance explained by the leading EOF of each
CMIP2 model control simulation surface air temperature (SAT) in
the region 120�E–90�W, 10�S–10�N

Model/group Variance explained (%)

BMRC 44
CCC 42
CCSR/NIES 58
CERFACS 61
CSIRO 49
MPI—ECHAM3 37
MPI—ECHAM4 59
GFDL 19
GISS 63
IAP 37
INM 57
LMD 44
MRI 57
NCAR—CSM 42
NCAR—WM 32
NRL 26
PCM 59
UKMO—HadCM3 69
UKMO—HadCM2 62
YONU 19
Observations 72

SAT was first interpolated onto the Hadley Centre model grid and
land areas masked. Also shown is the variance explained by the
leading EOF of the HadISST1 reconstruction of historical sea
surface temperatures (Rayner et al. 2004)
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model. This links the physical realism of some aspects of
the model (e.g. the strength of the coupling between the
atmosphere and the ocean) to its prediction of climate
change. The following steps are performed.

2.1 Pre-processing of model fields

For each model and the observations (Rayner et al. 2004;
Basnett and Parker 1997; Xie and Arkin 1997), the
monthly mean surface air temperature (SAT), mean sea
level pressure (MSLP) and precipitation (precip) are in-
terpolated onto a 3.75� longitude by 2.5� latitude regular

grid (identical to that used in the UKMO models) using
bi-linear interpolation. Land areas in the SAT fields are
masked to provide a proxy for SST. Anomalies are then
computed with respect to a mean season cycle computed
from the model control simulation. For the control si-
mulation, a linear trend is removed at each grid-point in
case of any model drifts. No trends are removed from the
1% per year experiments. Because of a large non-linear
trend in the YONU model, only the first half of the
control is used. Also, because only a few months are
available for the NRL model control simulation, the
detrended 1% per year experiment was used to compute
the ENSO variability patterns.

Fig. 1 Spatial patterns of the
leading EOF of de-seasonalised
SAT in the region 120�E–90�W,
10�S–10�N for the CMIP2
control simulations and the
observed SSTs. Model names
are indicated and the fraction of
interannual variance in each
case in shown in brackets.
Patterns are non-dimensional
and have unit amplitude. The
contour interval is 0.2, positive
contours are shown as solid
lines, the zero contour by the
dotted line and negative
contours dashed
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2.2 Identification of the model ENSO cycle

For each model, the leading empirical orthogonal
function (EOF) of SAT in the region 120�E–90�W,
10�S–10�N is computed from the de-trended control
simulation anomalies. Table 1 gives the fraction of
variance explained in each case and Fig. 1 shows the
patterns. The spatial patterns, time coefficients of the
leading EOF and NINO3 anomalies (Figs. 2, 3) are then

examined to provide a subjective assessment of whether
the leading EOF represented the model ENSO varia-
bility. This is judged to be true for all models.

2.3 Identification of the model ‘‘standard’’
El Niño event

The normalised (i.e. unit standard deviation) leading
EOF time coefficient is then used to determine the

Fig. 2 Normalised time coefficients of the leading EOF (grey lines) and un-normalised NINO3 anomalies (dashed black lines) for each
model control simulation of the CMIP2 models and the observations. Correlation coefficients between each time series are indicated by the
‘‘R2’’= text
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patterns of ENSO variability associated with SAT,
MSLP and precip from the control simulations, e.g.
SAT = a ENSOSAT + QSAT, where SAT is the
space–time vector of SAT anomalies, a the time
coefficient, ENSOSAT the time-invariant two-dimen-

sional pattern and QSAT is a space–time residual. The
resulting patterns; ENSOSAT, ENSOMSLP and
ENSOprecip (Figs. 4, 5, 6) thus represent the spatial
pattern of a one-standard deviation model El Niño
event.

Fig. 3 Power spectra of the normalised time coefficient of the
leading EOF from each CMIP2 model control simulation (think
black lines). The thin black lines indicate the power spectra of a
fitted autoregressive process of order one: mean, 5- and 95%-tiles.
The shading highlights the 3–7 year band where there is a relative
excess of power in observed ENSO variability. The number in the

bottom right of each panel is the standard deviation of the NINO3
anomalies from the model (and the observations). Annual and
semi-annual peaks seen in the analysis of the NRL are due to the
non-stationarity of the annual and semi-annual cycle in the 1%
experiment which is used here because of an absence of control-
simulation output
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2.4 Projection of climate change trends onto model
ENSO variability

Linear trends in de-seasonalised, SAT, MSLP and pre-
cip (Figs. 7, 8, 9) are then computed from the CMIP
model 1% per year experiments and used in a further
regression analysis: TrendSAT = bSAT ENSOSAT +

RSAT, where TrendSAT is a two-dimensional time-in-
variant pattern, bSAT the regression coefficient and RSAT

is a two-dimensional residual. Thus bSAT, bMSLP and
bprecip are the amplitudes of trends in SAT, MSLP and
precip expressed in terms of the particular models’ pat-
tern of ENSO variability and associated large-scale
coupled atmosphere–ocean feedbacks. Linear trends

Fig. 4 The SAT pattern corresponding to the CMIP2 models and
the observed ‘‘standard El Niño event’’. Patterns are obtained by
regressing the de-seasonalised SAT onto the normalised time
coefficient of the leading EOFs of near-equatorial SAT shown in

Fig. 1. Hence the patterns are very similar to those shown in Fig. 1
but now have a physical amplitude. The contour interval is 0.2 K,
positive contours are shown as solid lines, the zero contour by the
dotted line and negative contours by dashed lines
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were found to be adequate in capturing the main fea-
tures of the climate-change signals in the models (see,
e.g. Fig. 9.3 of IPCC third assessment report, Chap. 9,
Cubasch et al. 2001).

The b coefficients for each variable are numerically
equal to the pattern correlation between the model
trend pattern and the model pattern of ENSO varia-
bility normalised by the ratio of the standard devia-

tion of the ENSO pattern and the trend pattern
(Table 2). By examining these values, it is possible to
assess if a large b is due to a strong similarity between
the trend and the ENSO variability or due to large
spatial variability of the trend pattern or a weak
model ENSO. By projecting the climate-change signal
in this way, it is possible to compare all models sys-
tematically, alleviating many of the errors associated

Fig. 5 As in Fig. 4 but for MSLP anomalies (hPa) regressed onto the normalised time coefficient of the leading EOF of SAT. Contour
interval 0.2 hPa
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with mean climate and ENSO variability (e.g. the
double ITCZ, too frequent ENSO events, too weak
ENSO events, etc.) that would swamp any normal
grid-point by grid-point comparison and amalgama-
tion of model projections.

bs are shown in Fig. 10 and crucially reveal linear
relationships between SAT, MSLP and precip trend
patterns on century time scales. Hence, when the SAT
trend projects onto the model El Niño, the associated
MSLP and precip trends project onto the model El

Niño teleconnection patterns with an amplitude con-
sistent with that of the interannual variability (and
likewise for a La Niña-like SAT change). The con-
clusion is that the coupled atmosphere–ocean pro-
cesses that are responsible for determining the model
ENSO cycle also operate on the long time scales of
climate change. The implication is then that these
large-scale coupled processes provide some constraints
on the range of responses of the system.

Fig. 6 As in Fig. 4 but for precip anomalies (mm/day) regressed onto the normalised time coefficient of the leading EOF of SAT. Contour
interval 0.5 mm/day
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3 A probabilistic prediction

If we take the CMIP ensemble projected in this way as
the best estimate of current uncertainty in model esti-
mates of climate change, then it is possible to produce a
histogram of the range of ‘‘ENSOness’’ of future tropi-
cal Pacific climate change (Fig. 11a). The most probable
(p=0.45) outcome is for no large trend towards either El

Niño or La Niña conditions. The second most probable
outcome (p=0.20) is for a trend of around ‘‘1 standard
El Niño/century’’ in the 1% per year scenario—that is a
trend pattern that would produce a mean climate change
with the same pattern and magnitude as an El Niño
event in 100 years. Equally probable (p=0.10) is for
either a 0.5 standard El Niño/century or a 0.5 standard
La Nina/century. Also less probable (p=0.05) is for

Fig. 7 Patterns of SAT trend (K/century) from the CMIP2 1%/
year experiments. The contour interval is 0.2 K/century and the
contour lines are plotted such that positive contours show a trend

greater than the mean for the region, the dotted contourshows this
mean trend and the dashed contours show trends less than the mean
for the region
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either a 2 standard El Niño/century or a 1.5 or 2 stan-
dard La Nina/century. Despite the relatively low prob-
ability of the extreme cases, these are situations which
potentially can cause most disruption to society and it is

therefore often more critical to determine their prob-
ability of occurrence.

Figure 11a gives all models equal weight regardless of
their ability to simulate either mean climate or ENSO

ESI ¼ 1� SQRT
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Fig. 8 Patterns of MSLP trend (hPa/century) from the CMIP2 1%/year experiments. The contour interval is 0.2 hPa, positive contours
are shown as solid lines, the zero contour by the dotted line and negative contours by dashed lines
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variability. Ideally we would like to down-weight poor
models and up-weight good models in the estimate of the
climate-change histogram. Model ‘‘goodness’’ can be
argued in terms of resolution, accuracy of numerical
schemes, use of flux adjustment, etc., but here we require
a more systematic and quantitative approach. As the
ENSO-like patterns of climate change involve the large-
scale coupled feedbacks associated with ENSO, we de-
fine an ‘‘ENSO Simulation Index’’ (ESI) for each model:
where SQRT is the square-root operator, cSAT, cMSLP

and cprecip are the regression coefficients of the model
ENSO spatial variability patterns onto the observed
spatial variability patterns (calculated in the same way
as the b coefficients above), NINO3 and NINO3obs are
the model and observed monthly NINO3 anomalies, var
is the variance operator, sp an operator which gives the
ratio of the spectral power in the 3–7 years period band
to the spectral power at all other frequencies (the relative
periodicity of the model ENSO cycle) and phase is an
operator which gives the ratio of the December–Feb-
ruary variance over the June–August variance, measur-
ing the phase locking to the annual cycle. The ESI is one
for a perfect simulation of ENSO and zero for a very
poor simulation of ENSO.

The ESI for the CMIP model control simulations is
shown in Fig. 11b against the ENSOness measure of the
pattern of climate change in the model 1% per year
experiments. It is clear that those models that have the
best simulation of ENSO also have the smallest ampli-
tude El Niño- or La Niña-like pattern of climate change.

Those models with the largest amplitude response gen-
erally have a lower ESI and should therefore be down-
weighted in the response histogram. The ESI-weighed
histogram of the probability of El Niño- or La Niña-like
climate change is shown in Fig. 13a. While not changing
in overall shape in comparison to the unweighted his-
togram, the most likely no-trend case increases in like-
lihood (p=0.59) and the extreme cases decrease in
likelihood dropping below the 5% level. The second
most likely pattern (p=0.16, less likely than in the un-
weighted case) of response is for a 1 standard El Niño/
century pattern of change.

Exploiting one further aspect of the method employed
here, the spatial pattern of the trends associated with the
p=0.16 case can be found by examining the 1 standard
El Niño patterns found using the above regression
technique on the observed SST, MSLP and precip
(Fig. 12). This technique thus produces a transfer func-
tion between the model patterns of change and the ob-
served variability, in which we can have more confidence.

4 Sensitivity to the definition of model skill

The choice of ESI is somewhat subjective, although the
definition used in the study is designed to evaluate the
main characteristics of ENSO and its teleconnections,
i.e. the spatial patterns, the amplitude, the frequency
spectrum and the phase locking to the annual cycle. It is
impossible to explore all possible definitions of ESI, but

Table 2 Amplitude of ENSO-like climate change in the CMIP models

Model Amplitude of trend in terms of
ENSO pattern (b)

Trend-ENSO pattern correlation Ratio of trend pattern standard
deviation and ENSO pattern
standard deviation

SAT MSLP Precipitation SAT MSLP Precipitation SAT MSLP Precipitation

BMRC 0.11 �0.01 �0.05 0.11 �0.02 �0.07 0.95 0.48 0.65
CCC 2.19 2.10 2.05 0.85 0.89 0.87 2.59 2.36 2.34
CCSR 1.01 0.64 1.17 0.76 0.60 0.82 1.32 1.06 1.42
CERF 0.19 0.00 0.19 0.23 0.01 0.44 0.85 0.38 0.42
CSIR 0.44 �0.42 0.04 0.35 �0.48 0.03 1.28 0.88 1.58
ECH3 �0.58 �0.98 �0.34 �0.35 �0.65 �0.34 1.67 1.51 1.01
ECH4 0.35 �0.15 0.43 0.23 �0.16 0.41 1.49 0.90 1.04
GFDL 0.59 0.48 0.44 0.42 0.49 0.28 1.40 0.98 1.58
GISS 0.57 0.99 0.94 0.29 0.52 0.64 1.93 1.91 1.46
IAP �2.40 �1.66 �1.15 �0.81 �0.76 �0.47 2.95 2.18 2.46
INM 0.86 0.77 0.96 0.79 0.85 0.86 1.09 0.91 1.12
LMD 0.54 0.52 0.70 0.40 0.40 0.58 1.36 1.31 1.21
MRI �0.53 �0.71 �0.80 �0.34 �0.53 �0.52 1.59 1.35 1.54
NCAR—CSM �0.14 �0.50 �0.10 �0.21 �0.67 �0.13 0.68 0.75 0.74
NCAR—WM �0.35 0.20 �0.45 �0.22 0.10 �0.27 1.61 1.92 1.66
NRL 0.81 1.44 0.64 0.35 0.43 0.22 2.29 3.34 2.89
PCM 0.06 �0.11 0.03 0.17 �0.34 0.06 0.33 0.33 0.59
HadCM3 �0.03 �0.06 �0.35 �0.02 �0.06 �0.29 1.26 0.97 1.22
HadCM2 0.34 0.02 0.29 0.19 0.03 0.34 1.77 0.67 0.85
YONU �1.73 �1.71 �1.94 �0.77 �0.88 �0.75 2.25 1.94 2.59

Columns 1–3 show b coefficients in the regression of the trend in
surface air temperature (SAT), mean sea level pressure (MSLP) and
precipitation onto the normalised patterns of ENSO variability of
those variables (see text for the equations used). Columns 4–6 show

the spatial correlation between the trend patterns in the 1%/year
CO2 simulations and the leading patterns of ENSO variability and
columns 7–9 show the ratio of the spatial standard deviations of
those patterns for the respective variables
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it is possible to explore the sensitivity of the main results
of the study to some obvious changes. The ‘‘standard’’
ESI is defined in Eq. 1. Five further definitions were
applied:

ESI0 Standard definition
ESI1 Replace the regression coefficients in the first

three terms with spatial correlation coefficients
ESI2 Remove the SQRT operator
ESI3 Use 2–8 years in the sp operator

ESI4 Use 4–6 years in the sp operator
ESI5 Add extra terms of the form (1�cMEAN SAT)

2

In ESI5 the extra terms quantify the skill of the model
in producing mean conditions, although we should note
that because some models employ flux-corrections, in
those aspects of the mean climate are imposed and the
skill will be artificially enhanced.

The resulting weighted histograms of ‘‘ENSOness’’
of future trends are shown in Fig. 13. It is clear that

Fig. 9 Patterns of precip trend ((mm/day)/century) from the CMIP2 1%/year experiments. The contour interval is 0.5 (mm/day)/century,
positive contours are shown as solid lines, the zero contour by the dotted line and negative contours by dashed lines
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these different definitions of the ESI do not impact
greatly on the main results set out in the main paper,
i.e. the probability of the ‘‘no change’’ case is in-
creased and the probability of the more extreme cases
is reduced in comparison with the unweighted dis-
tribution.

Fig. 10 The amplitudes (bs) of trends in SAT, MSLP and precip
from the 1%/year CMIP model experiments expressed in terms of
the pattern of ENSO variability in the corresponding model control
simulations (see text for more details). A bSAT of one indicates e.g.
a SAT trend of one model standard El Niño event/century, a bSAT

of �1 a model standard La Niña event/century etc. a bSAT versus
bMSLP, bbSAT versus bprecip, c bprecip versus bMSLP. The R2 values
indicate the correlation coefficients in each case. The linear
relationships indicate that e.g. when the SAT trend projects onto
the model El Niño patten, the associated MSLP and precip trends
project onto the model El Niño teleconnection patterns with an
amplitude consistent with interannual ENSO variability. The large-
scale coupled atmosphere–ocean processes that determine the
model ENSO variability are also active on longer time scales

b

Fig. 11 a Un-weighted histogram of the ‘‘ENSOness’’ of the
pattern of climate change in the CMIP 1%/year experiments. The
ENSOness is defined as the average of the bSAT, bMSLP and bprecip
for each model (Fig. 10) and the histogram is normalised to give
probability values. A bin size of 0.5 is used with bins centered on 0,
±0.5, ±1, etc. b ENSOness measure against ESI for the CMIP
models. Those models with the more realistic ENSO cycle tend to
have a smaller amplitude trend towards either El Niño-like or La
Niña-like change
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The definition of any model skill index used in a
weighted-ensemble prediction will be open to criticisms
of subjectivity. Ultimately, we require measures which
are formally related to the likelihood of the predictand
variable of interest—information, which may be gleaned
from past observations of climate change, either his-
torical or palaeo. An uncomfortable consequence of this
method is that such observations may not be of
high-enough quality or may not even be available. The
pragmatic approach is therefore to examine the sensi-
tivity of the probabilistic prediction to variations in the
definition of skill.

5 Discussion and conclusions

In terms of the questions set out in the first paragraph of
the introduction, the global database of complex coupled
atmosphere–ocean models suggests that the most likely
scenario (as revealed in Figs. 11 and 13 for both the
unweighted and weighted distributions) is for no large-
amplitude change towards mean El Niño-like or La
Niña-like conditions. In terms of the paradigm for cli-
mate change, in which the signal is manifested as changes
in the frequency or residence times of model variability
(Corti et al. 1999), this appears not to be the case here.

The study has shown that by critically and quantita-
tively examining themodel physical processes (in this case
the large-scale atmosphere–ocean, or ‘‘dynamical ther-
mostat’’ feedbacks, following Jin et al. 2001) in an en-
semble of models it is possible to produce quantitative
probabilistic forecasts of future climate. This is a first step
and many improvements can and should be made. For
example, other patterns/modes are also evident in the
climate-change trends (see Figs. 7, 8, 9) and those may
obscure the ENSO-like pattern. Subsequent studies
should identify higher-order modes in order to explain a
greater fraction of the climate-change patterns. In addi-
tion, variables which determine other feedbacks asso-
ciated with clouds, radiation and evaporation may be
considered (Sun and Liu 1996; Li et al. 2000; Jin et al.
2001).

While the CMIP models produce a wide range of
responses, they are unlikely to even represent the true
level of uncertainty as many of the models share com-
ponents, parametrisation schemes, etc. and are therefore
not completely independent. A reduction of the effective
degrees of freedom in the weighted histogram of future
states (Fig. 13) would, most likely, result in a reduction
of the probability of no trend and an increase in the
probability of more ENSO-like climate change. It re-
mains a considerable challenge not only to improve
models but also to produce ensembles of climate-change
experiments that span the true range of uncertainty.
Ensembles with perturbed parameters in the physical
parametrisation schemes (Allen and Stainforth 2002)
may be one possible solution, as may ‘‘stochastic phy-
sics’’ (Buizza et al. 1999). In addition, it must again be
stressed that it is crucial to link the integrity of the model
simulation of present day climate and climate change to
the future predictions in a quantitative way.
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Fig. 12 Patterns of a 1 standard El Niño event/century derived
from observations. a SAT (K), b MSLP (hPa) and c precip (mm/
day). These patterns have a 16% chance of occurring in the CMIP2
1%/year scenario according to the weighted histogram shown in
Fig. 13(a)

102 Collins: El Niño- or La Niña-like climate change?



Fig. 13 Weighted histograms of ENSOness of future mean trends in the tropical Pacific in the CMIP2 1%/year scenario. The weighting in
each case is according to different definitions of the ENSO simulation index set out in the text. a ESI0, b ESI1, cESI2, d ESI3, e ESI4, f
ESI5
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